Semiparametric Bootstrap Prediction Intervals in time Series
Authors
Abstract:
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. Then the bootstrap samples are generated by resampling from the residuals. In this paper, first these sieve bootstrap methods are defined and, then, in a simulation study sieve bootstrap prediction intervals are compared with a standard Gaussian prediction interval. Finally, these methods are used to find the prediction intervals for weather data of Isfahan.
similar resources
Bootstrap prediction intervals for autoregressive time series
This paper is concerned with the calculation of interval forecasts for highly-persistent autoregressive (AR) time series using the bootstrap. Three methods are considered for countering the small-sample bias of least squares estimation for processes which have roots close to the unit circle: a bootstrap bias-corrected OLS estimator; the use of the Roy-Fuller estimator in place of OLS; and the u...
full textBootstrap Prediction Intervals for Power-transformed Time Series
_________________________________________________________________ In this paper we propose a bootstrap resampling scheme to construct prediction intervals for future values of a variable after a linear ARIMA model has been fitted to a power transformation of it. The advantages over existing methods for computing prediction intervals of power transformed time series are that the proposed bootstr...
full textNeural network sieve bootstrap prediction intervals for hydrological time series
When analyzing time series data, the estimation of forecast intervals, based on an observed sample path of the process, is a key issue. If the process is linear and the distribution of the error process is known, the methodology is well developed but, for departures from the true underlying distribution, the prediction intervals perform poorly. In this latter case several distribution free alte...
full textA time series bootstrap procedure for interpolation intervals
A sieve bootstrap procedure for constructing interpolation intervals for a general class of linear processes is proposed. This sieve bootstrap provides consistent estimators of the conditional distribution of the missing values, given the observed data. A Monte Carlo experiment is used to show the finite sample properties of the sieve bootstrap and finally, the performance of the proposed metho...
full textOn the Consistency of Sieve Bootstrap Prediction Intervals for Stationary Time Series
In the article, we consider construction of prediction intervals for stationary time series using Bühlmann’s [8], [9] sieve bootstrap approach. Basic theoretical properties concerning consistency are proved. We extend the results obtained earlier by Stine [21], Masarotto and Grigoletto [13] for an autoregressive time series of finite order to the rich class of linear and invertible stationary m...
full textA Sieve Bootstrap approach to constructing Prediction Intervals for Long Memory Time series
This paper is concerned with the construction of bootstrap prediction intervals for autoregressive fractionally integrated movingaverage processes which is a special class of long memory time series. For linear short-range dependent time series, the bootstrap based prediction interval is a good nonparametric alternative to those constructed under parameter assumptions. In the long memory case, ...
full textMy Resources
Journal title
volume 1 issue 1
pages 1- 12
publication date 2015-07
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023